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Using the boundary-fitted coordinate system, we calculate the 
unsteady solidification problem. The model for calculation is con- 
structed of cylindrical coordinates with a symmetrical axis. The Gauss- 
Seidel scheme with second-order accuracy of time and space is used as 
a solution method for the governing equations and the boundary-fitted 
coordinate system enables us to calculate the moving interface easily. 
The numerical results are compared with the analysis of a one- 
dimensional unsteady solidification problem and are in good agreement 
with it. From the calculations, we find a simple form of the crystal 
growth rate. 0 1992 Academic Press, Inc. 

INTRODUCTION 

The vertical Bridgman technique is the very popular 
method by which crystals are grown from melt. Many 
experiments [l-5] have been done to reveal the solidifica- 
tion phenomena. However, many unsolved problems 
remain. One of them is what determines the solid-liquid 
interface ‘shape and how it moves dynamically with time. 
The importance of the control of the interface shape has 
often been described [6-7-J. The interface shape influences 
the distribution and magnitude of the thermal stress and 
impurities. Many numerical methods have been developed 
as tools for the study of the solidification problems. 

Duda and his co-workers [S] proposed a kind of 
boundary-fitted coordinate system to calculate the moving 
boundary problems in the (x, y) plane. Their transforma- 
tions used for the calculation were 5 =x and q = y/.$x, t), 
where s(x, t) was the position of the interface and (l, q) were 
the coordinates of the transformed plane. Saitoh [9] used 
an extended version of Oberkamp’s transformation [lo] in 
radial coordinates. The finite-difference analysis was used 
for the calculation. Any point at which the boundary is not 
smooth, for example, the corner of a square, needs special 
consideration in his method. 

Zabaras [ 111 provided a numerical method using the 
finite element methodology (FEM) for solution of the one- 
dimensional inverse solution problem. Albert and O’Neill 

[12] solved the unsteady solidification problem in the 
(x, y) plane using FEM. Sullivan, Lynch, and O’Neill [ 131 
also extended their method using FEM to the planat 
instabilities of the solid-liquid interface. Moreover, Zabaras 
and Mukherjee [14] proposed a numerical method using 
the boundary element method (BEM) to calculate the 
unsteady solidification problem. 

No convection driven by the buoyancy force was con- 
sidered in the numerical method described above and no 
physical phenomena on the solid-liquid interface were 
found. 

Crochet and his coworkers [15] calculated the unsteady 
melt flow during the horizontal Bridgman growth and 
demonstrated the oscillatory convection. Roux and Hadid 
[16] also calculated the unsteady convection of the 
horizontal Bridgman. But they had no explanation for the 
variation of the interface in the growth time. 

We reported in previous papers [ 17, 1 S] on the steady 
solidification problem as a model of vertical Bridgman 
growth. We discussed the solution method to determine the 
interface shape and its position when the interface tem- 
perature was either equal or unequal to the melt tem- 
perature. In this paper, we extend the above solution 
method to the unsteady solidification problem and present 
a numerical method using the boundary-fitted coordinate 
system. 

GOVERNING EQUATIONS 

Figure 1 shows a schematic illustration of the model in 
cylindrical coordinates with a symmetrical axis, z. T,, T,, 
and Tb are the melting temperature, the temperature at the 
top of the ampoule, and the temperature at the bottom, 
respectively. mL and m, are the temperature gradients at the 
wall below the interface and at the wall above the interface. 
H,, H,, and Ware the length of the solid, the length of the 
liquid, and the diameter of the solid, respectively. V, is the 
moving velocity of the temperature profile (which is equal 
to the crystal growth rate at r = W/2). 
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FIG. 1. Schematic illustration of the model for calculation. 

Convection in the Bridgman system is driven by 
buoyancy differences induced by the radial and axial tem- 
perature gradients. In this system the temperature at the top 
wall is higher than that at the interface. That is, the axial 
temperature gradient operates to suppress convection. Only 
the radial temperature gradient causes convection in this 
system. 

We try to calculate the equations of motion and energy in 
the same geometry as this study. The results show the 
velocity of melt is very small (for example, the maximum 
velocity is about 1 x lo-* cm/s), because the radial tem- 
perature gradient is small. The convection has little effect on 
the interface shape. The results will be reported in detail 
elsewhere [ 19). Therefore, the convection terms are ignored 
in our simplified model to obtain a basic understanding of 
the solidification process [7]. 

The governing equations in cylindrical coordinates, with 
the symmetrical axis z, are 

=,#T at i ’ i=L,S (1) 

IC; = kiJpici, 

ksg =kLg 
I I 

+pAHv.n, 
s L 

at the interface 

dT 
Y$=o, at r=O, 

where k,[W/cm.K], p[g/cm3], and ci[J/g.K] are the 
thermal conductivity, the density, and the specific heat, 

solid-liquid interface, v[cm/s] is the growth velocity vector, 
the subscript L or S is the abbreviation for liquid or solid 
and AH[J/g] is the latent heat. 

Equation (2) is rewritten in the form derived by Crank 
c201, 

g,=(1+g2,)(--k,=,I.+ks=,I.), (4) 

where g = g(r, t) is the solid-liquid interface line, g, and g, 
are the partial derivatives of g(r, t) on t and on r, respec- 
tively. This form is available for calculation of the moving 
interface shape with time. 

The boundary conditions at the side wall are given as the 
linear function of the temperature gradient shown in Fig. 1. 
For example, the temperature at the wall below the interface 
has the following Dirichlet type: T= Tb + m,z - m, V, t at 
0 <z < H, and at r = W/2, where t is the growth time. 

The initial conditions for the calculation are given as both 
solid and liquid exist in the ampoule. Then the side walls are 
cooled (in Fig. 1 the temperature profile moves at the 
velocity, I’,,), the liquid-solid interface moves and the solid 
grows. 

We use a boundary&ted coordinate system which is 
similar to the one in [ 17, IS] to solve the unsteady 
solidification problem above. The boundary-fitted coor- 
dinate system enables us to treat the moving solid-liquid 
interface easily and to calculate the grid points if the 
coordinates of the boundaries are given. 

In cylindrical coordinates, the transformation equations 
which have the solutions of r(<, q) and ~(5, yl) are given 
from the results of Appendix A, 

art5 - 2Brgq + yr,, + Prr + Qr, = l/r, 

uzcs - ~Bz,=~ + yz,, + Pz< + Qz, = 0, 
(5) 

u = (rz + zi)/Ji, P= (r5r, + Z+,)lJ& 
y = (rg + zi)/Ji, 

(6) 
J,=rtz,-r,,z<. 

P = P(& 9) and Q = Q(r, ‘I) are the space control functions 
which were used in [17]. 

Equations (1 ), (3), and (4) are also transformed as 

~-f(Tc;,-Tqz,)($)+~(Ttr,-T,,r,)(~), 
0 0 

=“iCuTt,-2bT<q +yTqq+ PT, + QT,], (7) 

T<z, - T,,z< = 0, (8) 

g,=(l +g;) -K, -rPT5+r5T~ 
( Jo L 

+fh 

-r,,T5+r5T,, 

Jo 
(9) 

respectively; n is the unit vector perpendicular to the where K, = kilo; AH. . ‘,,I 
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The second and third terms on the left-hand side in 
Eq. (7) are the moving velocity of the grid point. Through 
this term, the moving interface is automatically built in. 
So it is very easy to calculate the variation of the interface 
shape in time. 

SOLUTION METHOD 

Equation (5) is solved by the usual SOR which was used 
for calculating the steady solidification problem before 
[17]. Equation (5) means the transformation from the 
physical plane (r, z) to the computational plane (5, q). The 
solution method of Eq. (5) is the same as the boundary- 
value problem’s; that is, first, the values of the boundary 
coordinates are given and then the quasi-elliptic equations 
are solved. 

An iterative method with second-accurate time and space 
[21] is used to solve Eq. (7). The discretization is 

T n+l 

-;[aTci-2PT,,+yT,,+PT,+QTJ"=O. (10) 

This form corresponds to Crank-Nicolson’s. An iterative 
solution method in this study is described below. The 
unknown variable T;f ’ is represented as T,,. Equation (10) 
is written in the following symbolic form: 

E=E(T,). (11) 

In order to improve the convergence, the iterative proce- 
dure described above can be modified by using the values of 
the unknowns at iteration m + 1 in Eq. (12) as soon as they 
are computed. So this procedure becomes a Gauss-Seidel 
technique. 

The numerical algorithm becomes: 

( 1) the temperature distribution in the solid, the liquid, 
and the solid-liquid interface shape are given as the initial 
conditions; 

(2) the temperature profile at the walls moves at the 
velocity of V. and the new temperature at walls is given; 

(3) compute the new interface line gn+i using Eq. (9) as 
below: 

g “+‘=g”+At.(l+g;) -K, T ( 
-raT5+rcT,, 

\ Jo IL 

+Ks -‘vTc l trtT, 
I) 

n . 
Jo 

2 S 

(4) transform from the physical plane to the computa- 
tional plane by the use of the interface line at the time level 
n+ 1; 

(5) solve Eq. (7) under an adequate time and space 
increment and obtain the temperature at the n + 1 time step; 

(6) calculate the moving velocity of the grid points, that 
is, (iYz/iYt)n + ’ and (dr/&)n + I, using the above results; 

(7) repeat the procedure (2). 

It is noted that the approximation of the first derivative 
g(r, t) on r needs the most attention. The errors of the 
approximation cause the instability. For high accuracy, we 
use the B-spline function described in [17]. The B-spline 
function is also very usable for the case of the unsteady 
solidification problem. 

An iterative procedure is 
RESULTS AND DISCUSSION 

T ;+~-T;+~E(T;)=o, 

T; = T”, 
(12) 

where 1 is the convergence parameter which must be chosen 
to be converged and m is the index of iteration. The condi- 
tion for convergence is obtained by a Fourier analysis [22]. 
The necessary condition for the solution of Eq. (12) to be 
stable is 

[( L+ 
24 

>I 

-1 
A< 

2 At MAX(Ar’, Az2) ’ (13) 

where At is a time step and Ar and AZ are a space-variable 
increment and time-variable increment, respectively. 

The mesh is shown in Fig. 2. The model is calculated for 
a 15 x 40 grid. The mini-supercomputer Cl-l 20 (Convex) is 
used to calculate all cases. The time for one calculation takes 
about three days when the time-variant increment, At, and 
the growth time are taken as 0.1 s and typically 2 x lo6 s, 
respectively. The values used for the calculation are listed in 
Table I. 

The values of the delay time, r, defined by Eq. (15), are 
calculated for two different kinds of the time-variant incre- 
ment, At. When At is 0.2, the ratio, r/r0 becomes 1.1, where 
z. represents the value at At = 0.1. On the other hand, when 
At is 0.4, r/r0 becomes 1.75. So in view of the accuracy, the 
value of At is fixed as 0.1. 

The reason for such a long time being required for one 
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FIG. 2. An example of mesh grid. 

calculation is that the program compiled in this study is 
partially vectorized. If the program is highly tuned and 
fully vectorized, the time for one calculation will be at least 
one-fifth shortened. 

1. Comparison with the Analysis of One-Dimensional 
Unsteady Solidification 

When the width of the ampoule W increases, the side 
walls acting as the heat sink have little influence on the 
temperature distribution near the center of the ampoule. 
Figure 3 displays that with the side walls as the heat sink 
they only influence the portion near them. In fact, the 
isothermal lines near the center and the solid-liquid inter- 
face are parallel to the r axis. So the solution of the two- 
dimensional unsteady solidification problem is expected to 

TABLE I 

Values of Parameters Used in Calculation 

Parameter 
\ k,/k, mLJms W/H H, (~2s) (cI$;s) :I”d4 

Figure (W/cm.K) (K/cm) (cm) (cm) x IO-’ x 10e5 

Fig. 3 0.14/0.07 112 60115 2.5 5.0 - - 
Fig. 4a 0.14/0.07 112 Co/15 2.5 5.0 - - 
Fig. 5 0.14JO.07 112 lO/lO 2.5 1.0 1.0 4.2 
Fig. 6 0.5610.28 214 lO/lO 2.5 5.0 5.0 0.59 
Fig. 9 0.56/0.28 214 - 1.0 10.0 - - 

Note. Specific heat, cL/cs[/g K] = 0.42/0.42; Density, p,/p,[g/cm3] = 
5.71/5.17; Latent heat, dH[J/g] = 726; Melting temperature, 
Tm[K] = 1511; Time-variable increment, dr[s] =O.l; Height of the 

r 

FIG. 3. Illustration of isotherms and solid-liquid interface with a large 
diameter. W = 60 cm, d T = 4 K, and the growth time, 1.08 x lo5 s. 

approach the one-dimensional solution when the width of 
the ampoule increases. The analytical solution of the one- 
dimensional unsteady solidification problem is in general 
obtained more easily than that of the two-dimensional case. 
So we try the analysis of it and the results are presented in 
Appendix B. 

If some approximations are applied to Eq. (B.14), the 
analytical solution will be obtained. But here we solve 
Eq. (B.14) by numerical calculation to be compared with 
the results in two dimensions. According to the numerical 
method of ordinary differential equations, for example, 
Milne’s method [23], we calculate Eq. (B.14) and obtain 
the crystal growth length. Values for the calculation are 
listed in Table I. Figure 4 shows the dependence of the 
growth length on the growth time. It is found that the crys- 
tal growth length at r = 0 in the two-dimensional case is in 
very good agreement with that in the one-dimensional case. 
So we conclude that the present method is also reliable in 
the case of the two-dimensional unsteady solidification 
problem. 

one-dimensional 
case 

two-dimension 
case 

0 4 8 12 16 20 

x10+* 
Growth TimeCsec) 

FIG. 4. Comparison with the calculation results in one dimension and 
that in two-dimensions: (a) one-dimensional solution; (b) two-dimensional 

ampole, H[cm] = H, + H,[cm]; Height of solid (initial value), H,[cm]. solution at r = 0. 
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FIG. 5. Illustrations of the dependence of the solid-liquid interface and the isotherms on the growth time. V,, = 1.0 x lo-’ (cm/s), d T= 1 K, the 
growth time t s. 
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FIG. 6. Illustrations of the dependence of the solid-liquid interface and the isotherms on the growth rate. V,, = 5.0 x lo-’ (cm/s), LIT= 1 K, the 
growth time t s. 



x 1 o-5 
I 1 I I I (b) The derivative of V on t, dV/dt is equal to nil when 

5 - h 0 0 00 00 0030 00 0 
t = 0 and t > r as shown in Fig. 8. This means that the curve 

CO 
of the growth rate, V, must have one point of inflection. 

0 3 Therefore, it concludes that the value offshould be greater 
aJ a than one. vi 
\4- We determine Vi and r by using the least squares method 
E 0 v when f = 1.2. The results are shown in Table I. Figure 8 

shows that Eq. (15) gives a good approximation. Vi is equal 
m3- 0 0 -(a) to the moving velocity of the temperature profile, V,,, which 
6. 

0 -(b) 
is equal to the growth rate at r = W/2. r is the delay time Ld 

cc? which represents the necessary time for the growth rate to 
2-o approach a constant value. Therefore, after the delay time, 

1 the crystal growth condition attains the steady solidilica- 
c, 
3 

tion. Wang and Witt [S] reported the similar phenomenon 
01- 

0 L 
0 

ooo O 
t7 O lo O0 

000 000 0 of the growth rate, using the Bridgman growth of gallium- 
doped germanium. So we conclude that the crystal growth 

0 rate is described by the delay time and the moving velocity 
f!4 I I I I I of the temperature profile. 
0 1 2 3 4 5 The dependence of the delayed time r on the parameters 

x106 is reported in detail elsewhere [25]. One of the conclusions 
Growth TimeCsec) in Ref. [25] is described as 

FIG. 7. Dependence of the growth rate at I = 0 on the growth time in 
Figs. 5 and 6: (a) growth rates obtained from Fig. 5; (b) growth rates p AHR 

TK- 
mk ’ (16) 
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Growth TimeCsec) 
x 1 o4 

damped oscillation has the form of exp( -st), where 6 is an 

1 2 3 4 5 attenuation constant. 

obtained from Fig. 6. 

where m is the temperature gradient at the walls and k is the 
thermal conductivity. In view of the response of the solid- 

2. Unsteady Solidljlcation Process liquid interface to the decrease in the temperature at the 
The unsteady solidification processes are shown in Fig. 5 walls, Eq. ( 16) is reasonable, qualitatively. For example, a 

and Fig. 6. Values for the calculations are listed in Table I. fast response is expected to be obtained when the liquid and 
The initial conditions of the interface shape and the tem- the solid have high thermal conductivities. As shown in 

perature distribution which are solved by the method in Eq. (16), r becomes a small value in such a case. 

[ 171 are given and the results are shown in Figs. 5a and 6a. Figure 9 shows the growth process for a complicated 
The dependence of the growth rate on time is shown in shape of the ampoule. The parameters used for the calcula- 
Fig. 7. It is found that the growth curve in Fig. 7 has a tion are listed in Table I. Such an ampoule is often used for 
constant growth rate after the increase of the growth rate. the small seed crystals. It is difficult to calculate the transient 
This constant growth rate is equal to the moving velocity 
of the temperature profile, V,, as shown Table I. So the 

-j 
X10 

interface shape is independent of time in this portion. 5.0 
The growth rate calculated at r = 0 is approximated by 

the function 2 
V= Vi[ 1 - e-(r/T)‘], (15) 5 

where Vi = VO. z 2.5 

This equation is chosen from the following reasons: d 
5 

(a) We aim at seeking the transient response of the E 
solid-liquid interface to the decrease of the temperature at ” 
walls. On the analogy of the damped oscillation [24], we I I I 1 

guess, the latent heat and finite heat transfer rate act as the v 0.2 0.4 0.6 0.6 
5 

damping force in the equation of the damped oscillation and Growth Time(sec) X10 

cause the delay of response. The type of solution for the FIG. 8. Fitting of Eq. (15) to the growth rate at = 0 in Fig. 7a. 
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FIG. 9. The growth process with a complicated shape of ampoule: 
H,=2.0cm, H,=2.0cm, H3=2.0cm,R,=2.0cm,R,=10.0cm. 

growth by use of the transformation proposed by Duda [S] 
and Saitoh [9]. However, the transformation in Eq. (5) can 
treat the ampoule easily if the coordinates of the boundary 
are given. Moreover, we extend the numerical method in 
this study to the instability of the solid-liquid interface with 
a solute element [26]. 

CONCLUSIONS 

1. We present a numerical method to calculate the 
unsteady solidification problem using the boundary-fitted 
coordinate system. 

2. The numerical result for the two-dimensional case with 
a large diameter of solid is in good agreement with the 
analysis of the one-dimensional unsteady solidification 
problem. 

3. It is found that the growth rate is described by the 
delayed time and the moving velocity of the temperature 
profile at the side walls. After the delay time, the interface 
shape is unchanged; that is, the interface shape attains the 
steady state. 

APPENDIX A: The Elliptic Generation System in Cylindrical 
Coordinates with an Axisymmetrical Axis 

From the definition of a Jacobian, J [27], we have 

J= it Y, YC 9 (A.11 
zc zv Zi 

where (5, r~, [) are the curvilinear coordinates. 

The transformation from the Cartesian coordinates to the 
cylindrical coordinates is made by substituting x = r cos 9 
y = r sin 8, and z = z into Eq. (A.l): 

J=r[(r5e,-r~e5)Zy+(r5e,-reee)zll 

+ (bpi -r&J ~~1. (A.2) 

The covariant metric tensor metric tensor g, is obtained in 
the same way as described above: 

g,, = ri + r2$ + z:, 

g,, = rgr, + r2egeq + z~z,, 

g,, = rerr + r2erei + zt_zc. 

g,, = ri + r20,2 + z:, 

g,, = rf + r28i + z:, 

g23=rrlri+r2e~er.zllzi. 

(A.3) 

The following relationships are obtained by taking the par- 
tial derivatives of x = r cos 8 on x and those of y = r cos 8 

on Y, 

rx = cos e, 

ry = sin 8, 

8, = -sin e/r, 

8, = cos e/r. 
(A.4) 

We have, from the chain-rule and Eq. (A.4), 

5, = 4, cos e + 5, sin e, 

te = r(t, cos e - 5, sin e). 
(A.51 

Using the definitions of [,, tY, <,, Eqs. (A.4) and (AS), 
we have 

5, = rV4pi - @,)/J 

te = r(ryz, - r,,qYJ 

5, = r(r,& - rcQIJ; 

yXi and iXi are also derived in the same way. 
In the axisymmetrical case, we have 

(A.61 

J= r(rgzy - r,z,), (A.7) 

2 
g,,=r +zr, : g,*=o, g13 = rtrc + vi, 

g2, = r2, g23 = 09 g3, = r: + z:, 
(A.8) 

<, = rz,lJ, 5, = - rr[lJ, 

i, = - rqlJ, [, = rr</J. 
(A.9) 
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The expression of the Laplacian of scalar function A is 

V2A= 1 g”A5d5,+ 1 V2<‘A,,, (A.10) 
r.j=l j=l 

where 5’ = 5, t2 = q, and l3 = [; 

if’= (gjmgkn- gpzgkrn)/J2, with (i, j, k) 

and (I, m, n) cyclic. (A.11) 

Substituting Eq. (A.8) into Eq. (A. 1 1 ), we obtain 

g” = r2(r; + z;)/J2, g22 = llr2, 

g33 = r2(ri + zi)/J2, g12 = 0, (A.12) 

g13 = -r2(r5rc + zgzy)/J2, g23 = 0. 

Equation (A.lO) can be written by using Eq. (A.12), 

V2A = g”ASt; + 2g13ASi + g33Aia: 

+V25A,+V25A,. (A.13) 

The Laplacians of the cylindrical and the curvilinear 
coordinates are expressed by 

V2r = l/r, v2z=o, 

V25=P, V2[ = Q. 
(A.14) 

Substituting Eq. (A.14) into Eq. (A.13), we have the elliptic 
generation system in cylindrical coordinates with the sym- 
metrical axis, z: 

art< - 28rc1 + uric + Pr5 + Qr, = 1 Jr, 

azcs - ‘&3~,~ + vii + Pzc + Qzr = 0, 
(A.15) 

a = (r: + zf)/Ji, 

Y = (ri + z:)lJ& 

B = (rsri + ztz~)lJ& 
Jo = r5zi: - ryzg. 

(A.16) 

APPENDIX B: ONE-DIMENSIONAL UNSTEADY 
SOLIDIFICATION PROBLEM WITH A FINITE LENGTH 

The governing equations are given as 

aT a2T 
at=“iQ (i=LorS) (B.1) 

-k,g U3.2) 

T(x, 0) = To(x), at t=O (B.3) 

T(0, t) = - T1 - v,t, at x=0 (B.4) 

T(q, t)=O, at x=q (B-5) 

T(h, t) = T2 - vL t, at x = h, (B.6) 

where q [cm] is a position of the solid-liquid interface, 
h [cm] is a height of the ampoule, T,(x) is the initial tem- 
perature distribution, Ti is the initial temperature and vi 
[K/s] is the cooling rate. T( x, t) described above is replaced 
by T(x, t) - Tm. 

Using Eq. (B.3) and the Laplace transform T(x, s) of 
T(x, t) for Eq. (B. 1 ), we have over the interval 0 < x < q, 

s= (ST- To(x))/ic,. (B.7) 

Then, using Eq. (B.4) and the Laplace transform T’(z, s) 
of T(x, s) for Eq. (B.7) we have 

T’,(z) 
- us(z2 - S/KS)’ 03.8) 

By the use of inversion of the Laplace transform and 
Eq. (B.5), T(x, s) has the form 

T(x, s) = - :+ 5 cosh(s/lc,)1’2 x 
( > 

x sinh(s/lcs)“2 x + (l/d Jox To(t) 

X 
sinh(s/K,)1’2 < sinh(s/rcs)1’2 (q - x) 

(.s/~s)~‘~ sinh(s/rc,)1’2 q 4 

+ (l/G 1 To(t) 

x sW+d x sWs/W2 (4 - 5) d5 
(S/K,)1’2 sinh(s/rc,)1’2 q 

(B 9) 
’ ’ 

Moreover, applying the residue theorem to Eq. (B.9), we 
have T(x, t), ,. 

T(x, t)= -T,-v, 

vsx 
( 

q2 x2 
+y t+3rc,+61c, > 

m +c 2Tl sinWx/q) e _ (,+)2 K8t 
II=1 n7c 

+i t sin(n4q) j: T,(t) 
n 1 

x sin(nzi;/q) d~e-(““/4)* K~f. (B.lO) 
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In the same way, we obtain, over the interval q < x < h, ACKNOWLEDGMENTS 
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m 2vL(h-q)2 . nz 
- .c, (nn)’ XL s’nh-h-xX) 
x e - Cnnl(h - Y)l* KLI 

+h-q+, sm 
mc(h-x) h-q 2 ‘f ’ h-q ja Tdh-5) 

(B.ll) 

The initial temperature distribution is given as 

To(x) = ms(x - 4), OdxGq, 
mL(x - 412 qdx<h. 

(B.12) 

where m, and mL are the temperature gradient in solid and 
that in liquid, respectively. 

From Eqs. (B.3), (B.4), (B.6), we have 

T, = -m,q, 
Tz = m,(h - q). 

(B.13) 

Equations (B.2), (B.lO), (B.ll), and (B-13) give the growth 
rate of the crystal, 
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